

# ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

422.29/00-0000:00TD

Действует с 1985 г.

**Холодильный узел**KBK 2x28-IV
KBK 2x28-IV/1
KBK 2x28-IV/2



к этой Технической документации принадлежат приложения по перечню 422.29/00-0000:00 Anl

| содерж     | ание                                                                      | Страница |
|------------|---------------------------------------------------------------------------|----------|
| I.         | Описание                                                                  | 2        |
| I.I.       | Применение                                                                | 2        |
| I.2.       | Технические данные                                                        | 2        |
| I.2.I.     | Размеры, характеристика, область применения                               | 2        |
| I.2.2.     | Условия установки и присоединения                                         | 3        |
| I.3.       | Конструкция                                                               | 3        |
| I.4.       | Принцип действия                                                          | 3        |
| I.4.I.     | Пиклы хладагентов                                                         | 3        |
| I.4.I.I.   | цикл R 22                                                                 | 4        |
| I.4.I.2.   | •                                                                         | 4        |
|            | Цикл R I3                                                                 | 4        |
| I.4.I.2.I. | Общее                                                                     | 4        |
| I.4.I.2.2. | Специальные детали установки и приборов в цикле R 13                      |          |
| I.4.2.     | Приведение в действие холодильной установки                               | 5        |
| I.4.3.     | Цика охлаждающей воды                                                     | 5        |
| I.4.4.     | Предохранительные и эксплуатационные контрольно—<br>измерительные приборы | 5        |
| I.4.5.     | Электрическая схема                                                       | 6        |
| I.5.       | Объем поставки                                                            | 6        |
| I.6.       | Охрана здоровья и труда, пожарная охрана                                  | 6        |
| I.6.I.     | Постановления по безопасности                                             | 6        |
| I.6.2.     | Особые указания                                                           | 6        |
| I.6.2.I.   | Общее                                                                     | 6        |
| I.6.2.2.   | Применение хладагента R 13                                                | 7        |
| 2.         | Транспортировка и монтаж                                                  | 7        |
| 3.         | Сдача в эксплуатацию и обслуживание                                       | 7        |
| 3.I.       | Общее                                                                     | 7        |
| 3.2.       | Испытание на герметичность                                                | 8        |
| 3.2.I.     | Общее                                                                     | 8        |
| 3.2.2.     | Испытание на герметичность цикла для R 22                                 | 8        |
| 3.2.3.     | Испытание на герметичность цикла для R 13                                 | 9        |
| 3.3.       | Зарядка хладагентом                                                       | 9        |
| 3.3.I.     | Зарядка цикла R 22                                                        | 9        |
| 3.3.2.     | Зарядка цикла R I3                                                        | 9        |
| 3.4.       | Сдача в эксплуатацию                                                      | II       |
| *          | •                                                                         |          |
| 3.5.       | Контроль работы                                                           | II       |
| 3.5.I.     | Общее                                                                     | II       |
| 3.5.2.     | План проверок                                                             | 12       |
| 3.5.3.     | Описание отдельных проверок                                               | 12       |
| 3.5.3.I.   | Проверка герметичности                                                    | 12       |
| 3.5.3.2.   | Проверка уровня и цвета масла                                             | 12       |
| 3.5.3.3.   | Проверка маслоподогревателей                                              | 12       |
| 3.5.3.4.   | Проверка предохранительных реле давления                                  | 12       |
| 3.5.3.5.   | Проверка наполняемого количества R 13                                     | 13       |
| 3.6.       | Выключение - перерывы в работе                                            | 13       |
| 3.6.I.     | Кратковременные прекращения работы                                        | 13       |
| 3.6.2.     | Более долгие перерывы в работе                                            | 13       |
| 4.         | Техническое обслуживание, неисправности, технический уход,                | 14       |
|            | ремонтные работы                                                          | 14       |

|            |                                                                            | Страница   |
|------------|----------------------------------------------------------------------------|------------|
| 4.I.       | Работы по техническому обслуживанию                                        | 14         |
| 4.I.I.     | Общее                                                                      | 14         |
| 4.I.2.     | План технического обслуживания                                             | 14         |
| 4.1.3.     | Работы по техническому обслуживанию без вмещательства<br>в цики хиадагента | I4         |
| 4.I.3.I.   | Доливка холодильного масла                                                 | 14         |
| 4.I.3.2.   | Очистка водных путей конденсатора и охладителя сжатого газа                | <b>I</b> 5 |
| 4.I.3.3.   | Вамена маслоподогревателя                                                  | 15         |
| 4.I.4.     | Работы по техническому обслуживанию с вмещательством в цикл<br>хладагента  | 15         |
| 4.I.4.I.   | Доливка хладагента                                                         | 15         |
| 4.I.4.I.I. | Доливка хладагента R 22                                                    | 15         |
| 4.I.4.I.2. | Доливка хладагента R I3                                                    | <b>I</b> 5 |
| 4.I.4.2.   | Вамена рабочих вентилей и холодильного масла                               | 16         |
| 4.I.4.2.I. | Компрессор в цикле R I3                                                    | 16         |
| 4.I.4.2.2. | Компрессор в цикле R 22                                                    | 17         |
| 4.2.       | Неисправности - причины и устранение                                       | 17         |
| 4.3.       | Замена компрессоров                                                        | 20         |

# I. Описание

# I.I. Применение

Холодильные узлы КВК 2 х 28-IV, КВК 2 х 28-IV/I и КВК 2 х 28-IV/2 предназначены для производства холода при низких температурах.

Кроме испарителя и необходимого при случае распределителя хладагента он и включает все детали, необходимые для низкотемнературных холодильных установок.

Использование наших холодильных узлов обеспечивает и облегчает производство низкотемпературных холодильных установок для самых различных случаев применения. Главной областыю применения является использование на наших изделиях "камеры для имитации окружающей среды".

Из-за специальных точек зрения, на которые надо обратить внимание при низкотемпературных холодильных установках и при применении хиадагента R I3 перед использованием этих холодильных узлов на других изделиях в каждом случае проектировщик с соответствующими опытом и знаниями должен осуществить проектирование.

# І.2. Технические данные

# І.2.І. Размеры, характеристика, область применение

| Длина:                        | 1340 mm                                      |
|-------------------------------|----------------------------------------------|
| Ширина:                       | 590 mm                                       |
| Bucora:                       | I450 mm                                      |
| Macca:                        | 510 Kr                                       |
| Принцип производства холода:  | двухступенчатый каскадный цикл               |
|                               | хладагента с водным охлаждением              |
| Хладагенты:                   | R 22/R I3                                    |
| Рабочее давление:             | ступень R 22 I,6 МПа (изб.давл.)             |
|                               | ступень R I3 2,0 МПа (изб.давд.)             |
|                               | цики окизидаю-                               |
|                               | щей воды: 0,6 МПа (изб.давл.)                |
| Диапавон температура кипения: | - 80 (кратковременно - 85) до - 55°C         |
| Теоретическая объемная подача | компрессор для R 22: 28,9 дм <sup>3</sup> /ч |
| компрессоров:                 | компрессор для R 13: 28,9 дм <sup>3</sup> /ч |
|                               |                                              |

http://holodko.ru/

# I.2.2. Условия установки и присоединения

Помещение, в котором устанавливают холодильные узлы, должно соответствовать требованиям ТГЛ 30456 или предписаниям, принятым в данной стране.

Специальные фундаменты не нужны.

Пол должен быть ровным и иметь необходимую грузоподъемность.

Внимание! Защитить холодильный узел от непосредственного облучения солнцем!

Условия окружающей среды:

Температура:

Относительная влажность:

Электрическое питание от сети:

Макс. одновременная электр. потребность в мощности:

Вид включения:

Расход охлаждающей воды:

Значение Р<sub>н</sub> охлаждающей воды:

Необходимая разность давлений между подаваемой и возвращаемой охлаждающей

водой:

Допустимый диапазон температур

подаваемой воды:

5... **30°**С при работе 5... **35°**С при простое

Marc. 70 %

грехфазный гок 380 в  $\pm$  5 % с нулевым проводом, 50 гн

прибл. 10 квт

Все электрические приводы

включаются прямо.

макс. 0,8 м3/ч при температуре

подаваемой воды 15°C

3 - I2

0,25 до 0,5 МПа

5 до 25 <sup>о</sup>С

Внимание! При высоких температурах подаваемой воды получается уменьшение холодопроизводительности. Вследствие этого при случае нельзя достигать производительностей, обеспечиваемых для общей установки!

# I.3. Конструкция

Холодильный узел имеет каркас из фасонной стали, в котором вмонтированы все элементы конструкции. Вертикальная конструкция холодильных узлов и особая форма каркаса обеспечивают хорошую доступность к отдельным агрегатам и облегчают техническое обслуживание и ремонтные работы. Кроме этого вертикальная конструкция способствует незначительной потребности в площади основания. Трубопроводы хладагента состоят из медных труб, температура поверхности которых во время работы лежат значительно ниже температуры окружающей среды; они имеют высококачественную, гибкую пластмассовую изоляцию с эффективной пароизоляцией.

# І.4. Принцип действия

# І.4.І. Циклы хладагента

Описание циклов хладагента осуществляется на основе схемы грубопроводов 422.29/00-000:00  $\rm R_{\rm n}$  (3).

Цифры в скосках соответствует нумерации этой схемы и чертежа № 422.29/00-0000:00 TD I.

Холодильный узел работает по принципу каскада. Имеются два отдельные одноступенчатые циклы хладагента, которые термически соединены с помощью испарителя-конденсатора (5).

Хладагенты:

R 22 (CHCLF<sub>2</sub>)

R 13 (CCLF<sub>3</sub>)

Рабочие давления:

смотри в разделе І.2.І.

#### І.4.І.І. Цикл № 22

- является одноступенчатым замкнутым циклом хладагента
- самые важные конструктивные элементы: компрессор (3)

конденсатор с водяным охлаждением (4)

фильтр-осущитель (15)

магнитный вентиль (19) термостатический расбирительный вентиль (II)

испаритель-конденсатор (5)

- Термостатический расширительный вентиль (II) имеет точку МОП, т. е. он ограничивает давление кипения на максимальное значение, которое при работе не превышают.
- Реле давления (23) имеет блокировку повторного включения. Если оно сработало, то обратное включение после соответствующего снижения давления надо осуществить вручную.

#### I.4.I.2. ЦИКЛ R I3

# I.4.I.2.I. Общее

- Кроме испарителя и необходимого при случае распределителя хладагента он имеет все конструктивные детали, необходимые для производства холода, регулирования холодо-производительности и работы.
- R I3 (CF<sub>8</sub>CL) является хладагентом высокого давления, т. е. при самых температурах насыщения по сравнению с обычными хладагентами (напр. R I2, R 22) он имеет гораздо более высокое давление насыщения.
- Цикл R I3 является одноступенчатым холодильным циклом. В связи с имеющимися условиями работы и нагрузки и вследствие требования регулирования холодопроизводительности нужны дополнительные устройства.
- Реле давления (24) имеет автоматическое устройство повторного включения.

Путь хладагента в цикле R 13 при режиме охлаждения

- Сжатые и перегретые пары R I3 поступают из компрессора (2) к охладителю сжатого газа (6).
- Здесь часть теплоты перегрева передается охлаждающей воде и захваченное масло отделяется.
- В испарителе-конденсаторе (5) осуществляется конденсация R 13.
- Жидкий R I3 по фильтру-осушителю (I6) и магнитному вентилю (20) поступает к термостатическому расширительному вентилю (I2).
- Смесь жидкости и газа, получаемый при расширении, по впрыскивающему грубопроводу направляется к испарителю.
- Перегретый R 13 по всасывающему трубопроводу поступает к компрессору (2).

# I.4.I.2.2. Специальные детали и приборы в цикле R 13

 Уравнительный трубопровод и фильтр (43) с вмонтированным в нем дроссельным местом Задача: Возврат масла, отделенное в охладителе сжатого газа (6), к всасывающему трубопроводу и таким образом к компрессору (2).

> Осуществление уравнения давления от стороны нагнетания к стороне всасывания. В простое недопустимо высокое увеличение давления в цикле R I3 предотвращают только тогда, когда наполняемое количество R I3 может равномерно распределиться во всем цикле.

Встроенное дроссельное место фильтрами защищен от засорения.

2. Обводный трубопровод от нагнетательного трубопровода к всасывающему трубопроводу с магнитным вентилем (21) и дросселем (13).

Задача: Осуществление перепускного режима в ступени Р I3. Этим возможно регулирование холодопроизводительности от О до IOO % без включения и выключения работы компрессора.

3. Трубопровод повторного впрыска с магнитным вентилем (22) и дросселем (42) - термореле (26)

Задача: С помощью этой схемы максимальная температура всасывающего трубопровода ограничивается на допустимое значение, а термическая перегрузка компрессора предотвращается.

Датчик термореле (26) прикреплен на всасывающем трубопроводе. Если температура всасывающего трубопровода превыщает значение, настроенное на термореле (26), магнитный вентиль (21) открывается. Жидкий R I3 по дросселю (I3)
впрыскивается во всасывающий трубопровод. Этим охлаждаются всасываемые
газы R I3.

Повторный впрыск действует при охлаждении, исходя от высоких температур, и частично при режиме регулирования.

4. Реле давления (25) для разгрузки компрессора (2)

Вадача: С помощью этой схемы предотвращают работу компрессора для R 13 при высоком противодавлении и высоком дифференциальном напоре, а нагрузка приводного двигаталя понижается.

Реле давления (25) причиняет, что при определенном давлении на стороне нагнетания цикл R I3 переключается на перепускный режим.

После определенного снижения давления производится обратное включение на нормальный режим охлаждения.

#### І.4.2. Приведение в действие холодильной установки

Если холодильный узел после простоя коммутациями вручную или автоматическим включением приводитая в действие, пуск осуществляется следующим образом:

- Компрессор для R 22 (3) пускается в ход, магнитный вентиль (19) открывается.
- Прибл. 90 секунд после этого включается компрессор для R I3 (2).
- При случае при первом пуске компрессора для R I3 достигают предельно допустимого рабочего давления на нагнетательной стороне R I3, а компрессор для R I3 (2) отключается с помощью реле давления (24). После соответствующего снижения давления компрессор для R I3 снова автоматически пускается в ход.
- В начале работы получается срабатывание схемы разгрузки (раздел I.4.I.2.2.., пункт 4).
- Если цикл R I3 работает при высоких давлениях кипения, в течение более долгой времени может получаться частое срабатывание схемы разгрузки.

# І.4.3. Цикл охлаждающей воды

- При поставке холодильного узла готово смонтирован
- Водорегулятор (I7) обеспечивает экономный расход охлаждающей воды и отрегулирован на самое выгодное значение для функционирования. Настройку недьзя изменить!

При простое компрессоров (2, 3) водорегулятор (17) автоматически запирает проток охлаждающей воды или дросселирует его до незначительного остаточного количества.

#### І.4.4. Предохранительные и эксплуатационные контрольно-измерительные приборы

- Реле давления (23, 24) защищают колодильный циклы от недопустимо высокого увеличения давления.

- Они отрегулированы на рабочее давление соответствующего цикла и пломбированы.
- Реле давления (23) выключает компрессор для R 22 (3) и компрессор для R I3 (2).
- Реле давления (24) действует только на компрессор для R I3.
- Соединяя манометры с вентилями (33, 34, 35, 36) можно измерить давления в обоих циклах в работе и при простое установки.
- Обмотки приводных двигателей компрессоров термически защищены датчиками температуры. При повышении допустимой температуры обмотки соответствующий компрессор выключается.

# І.4.5. Электрическая схема

- Холодильный узел не имеет отдельного шкафа управления.
- Если холодильные узлы являются составными частями изделия "камера для имитации окружающей среды", то необходимые электрические схемы осуществлены электрической частью мощности и обслуживающей частью, принадлежащими к общему изделию.
- В этом случае данные по электрической схеме указаны в Технической документации электрооборудования соответствующей камеры для имитации окружающей среды.
- Если холодильные узлы используются в соединении с другими изделиями, то относительно требований к электрической схеме переговорить с изготовителем.

# I.5. Объем поставки

к каждому холодильному узлу поставляются:

- первая зарядка компрессоров специальным холодильным маслом
- один комплект запасных частей.

# I.6. Охрана здровья и труда, пожарная охрана

#### І.6.І. Постановления по безопасности

Установку, монтаж и работу холодильных узлов, а также работы по техническому обслуживанию и ремонтные работы надо осуществить при соблюдении предписаний, принятых в данной стране. В ГДР в частности соблюдать следующие постановления:

TTI 30 33I/OI, /02, /04, /05

Передвижные баки с сжатым газом

Постановление по охране груда 20/І

Первая помощь при несчастных случаях и заболеваниях трудящихся на заводе

Закон о воде от 2 июля 82 г. (сборник законов I, № 26, стр. 467)

Первая инструкция об исполнении закона о воде от 2 июля 82 г. (сборник законов I, № 26, стр. 477)

TIT 30456/0I... 03

Охрана здоровья и труда, пожарная охрана; холодильные установки

Постановление по охране труда и пожарной безопасности 900/1

Охрана здоровья и труда, пожарная охрана; электротехнические установки

ТГЛ 30104

Охрана здоровья и труда, пожарная охрана; поведение в соответствии с охраной труда и с пожарной охраной; общие установления.

# I.6.2. Особые указания

# I.6.2.I. Общее

http://holodko.ru/

І. Холодильный узел могут обслуживать только трудящиеся, которые ознакомились с общей установкой и с соответствующими Техническими документациями и получили доказанное обучение. Эти трудящиеся могут осуществить работы по техническому обслуживанию без вмещательства в циклы хладагентов.

- 2. Трудящиеся, которые осуществляют мероприятия по техническому уходу и/или надзор за ними и которые проводят работы по техническому обслуживанию с вмещательством в циклы хладагентов, должны иметь оконченное профессиональное обучение в основной профессии, близкой к направлению специализации холодильная техника, иметь двухлетний опыт по специальности и ознакомились с холодильной установкой и с соответствующими Техническими документациями.
- 3. Вмещательства в электрооборудование могут осуществить только подготовленные электриви.
- 4. Настройку реле давления (23, 24) нельзя произвольно изменить. Эти предохранительные устройства надо регулярно проверить, как указано в разделе 3.5.3.4.
- 5. Трубопроводы, по которым течет сжатый газ, могут получить температуру поверхности прибл.  $100^{\circ}$ C. Предотвратить касаться их.

# I.6.2.2. Применение хладагента R I3

- І. Ни в коем случае не превысить наполняемое количество R I3, указанное в Технической документации для общего изделия, так как иначе имеется опасность получения недопустимо высокого давления в цикле R I3 при простое.
- 2. При наполненном цикле R I3 нельзя закрыть запорные вентили на компрессоре для R I3 (2). Иначе звучащие данные напр. в документации для компрессора, недействительны!!!
- 3. Давление в баллонах для хладагента R I3, используемые для зарядки цикла R I3, может быть гораздо выше, чем рабочее давление в цикле для R I3. В процессе наполнения принимать надлежащие меры, которые обеспечивают, чтобы вследствие этого не могло получаться недопустимое давление в цикле R I3 (смотри пункт 3.3.2.).

#### 2. Транспортировка и монтаж

Если холодильные узлы поставляются отдельно, поступать следующим образом:

- Холодильный узел в упаковке по возможности ближе приблизить к месту установки.
- Обратить внимание на маркировку на упаковке.
- Распакованный холодильный узел с помощью роликов или крановым транспортом приблизить к месту установки.
- При транспортировке краном в высверленные отверстия в верхнем продольном брусе снизу вставить болты М 20 х 90 с шестигранными головками и привинтить кольцевые гайки М 20 по ТГЛ 0-582.
- Трубопроводы для хладагента без напряжения присоединить с холодильным узлом.
- Создать электрические присоединения холодильного узла в соответствии с данными в Технической документации для электрооборудования общей установки.
- Осуществить подключения охлаждающей воды (этот пункт действует и для холодильных узлов, которые при поставке крепко соединены с элементом с полезным объемом камеры для имитации окружающей среды).
  - Внимание! Эксплуатирующий должен предусмотреть запорные устройства в трубопроводе для подачи охлаждающей воды.

# 3. Сдача в эксплуатацию и обслуживание

# 3.1. Общее

- Перед перестановкой угловых вентилей ослабить гайку на уплотнении сальника штока вентиля. После перестановки снова затянуть ее.
- В связи с особенностями холодильных узлов некоторые работы/процессы осуществлять другим способом, чем указано в Технической документации для компрессора. Если имеются различия, то в каждом случае действуют установления Технической документации для холодильного узла.

- 6 часов до пуска компрессора надо включить маслоподогреватели. Если холодильные узлы входят в состав камер для имитации окружающей среды, то это осуществляется включением главного выключателя. При пуске компрессоров маслоподогреватели автоматически выключаются.

#### 3.2. Испытание на герметичность

# 3.2.1. Общее

Образ действия при испытании на герметичность зависит от того, как холодильный узел поставляется.

І. Холодильный узел при поставке неподвижно соединен с узлом с полезным объемом камеры для имитации окружающей среды или с ожлаждаемым объемом. Трубопроводы циклов R 13 и R 22 полностью укомплектованы.

В этом случае в обоих холодильных циклах при поставке имеется маленькое избыточное давление.

Испытание на герметичность необходимо только в том цикле, в котором давление снизилось ниже 0,1 МПа (изб. давл.)

Измерение давления на вентилях (33, 34, 35).

Если давление выше, чем I МПа (изб. давл.), состветствующий цикл можно считать герметичным.

2. Холодильный узел поставляется как отдельное изделие, цикл R 13 только сборкой на месте установки полностью комплектуется.

Цики R 22 испытать на герметичность только тогда, когда давление снизилось ниже  $O_{*}I$  МПа (изб. давл.).

Измерение давления на вентилях (33, 34). Цикл R I3 после монтажа трубопроводов для хладагента в каждом случае испытать на герметичность.

# 3.2.2. Испытание на герметичность цикла R 22

- Затянуть резьбовые соединения.
- Удалить предохранители для компрессоров.
- Установить манометр на вентиле (33).
- Переключения на обслуживающей части установки осуществить таким образом, чтобы магнитный вентиль (19) открылся.
- C вентилем (34) соединить баллон с хладагентом R 22.
- Медленно заполнить R 22 до давления 0,2 МПа (изб. давл.)
- Баллон с R 22 отсоединить от вентиля (34).
- Баллон с сухим азотом (точка росы 35°C или ниже) соединить с вентилем (34). Баллон с азотом должен иметь редукционный клапан настроенное давление регулирования I,6 МПа (изб. давл.).
- Давление в цикле R 22 повысить до 0,4 МПа (изб. давл.).
- Предварительное испытание на герметичность с помощью галоидного течеискателя устранить неплотности.
- Давление медленно повысить до I,6 МПа (изб. давл.) тщательно испытать на герметичность.
- Испытание в простое: 1,6 МПа (изб. давл.) в течение 24 часов.
- Допустимое изменение темпретаруры в помещении: 2 К. Допустимое снижение давления: 0,02 МПа.

http://holodko.ru/

- Если снижение давления больше, чем 0,02 МПа, устранить имеющиеся еще неплотности, повторить испытание в простое.

- Если доказана герметичность снизить давление до 0,15 МПа (изб. давл.), открывая вентиль (34).

Это остаточное давление оставить в цикле R 22 до зарядки хладагентом.

# 3.2.3. Испытание на герметичность цикла R 13

- Принципиально осуществить как при цикле R 22.
- С вентилем (35) соединить манометр.
- Заполнить хладагент R 22 и сухой азот через вентиль (36).
- Осуществить предварительное испытание при 0,4 МПа (изб. давл.).
- Окончательное доказательство герметичности с 2,0 МПа (изб. давл.) использовать редукционный клапан с настроенным давлением редукциорования около 2,0 МПа (изб.давл.).
- Испытание в простое в течение 24 часов. Допустимое снижение давления: 0,02 МПа.
- Отрегулировать остаточное давление 0,15 МПа (изб. давл.), открывая вентиль (36).

#### 3.3. Зарядка хладагентом

#### 3.3.I. Зарядка цикла R 22

- І. Предохранители для компрессоров остаются удаленными.
- 2. Соответствующими переключениями в обслуживающей части открыть магнитный вентиль (19).
- 3. Цикл R 22 освободить от давления открыть вентиль (33).
- 4. С вентилем (33) соединить баллон с R 22 выпустить воздух из наполнительного трубопровода.
- 5. Баллон с хладагентом поставить на весы (точность измерения  $\pm$  0,2 кг) и в сосуд с водой. Во время зарядки нагревать воду. Постоянно контролировать температуру. Макс. допустимое значение:  $\pm$  40 $^{\circ}$ C.
- 6. С вентилем (34) соединить вакуумнасос с измерительным устройством для вакуума (U-образной трубой со ртутью и. т. п.).
- 7. Цини R 22 два раза вакуумировать до давления меньше, чем 40 гПа абсолютно (30 торр). После каждого вакуумирования разгрузить вакуум, открывая баллонный вентиль и вентиль (33).

При этом заполнить хладагент, пока не достигнуто давление окружающей среды в цикле (Контроль с помощью измерительного устройства для вакуума).

- 8. После зарядки хладагентом до следующего вакуумирования ждать IO минут.
- 9. Еще раз вакуумировать до остаточного давления мин. 40 гПа абс. (30 торр).
- 10. Заполнить заполняемое количество R 22, указанное в документации для изделия.
- II. Перед заполнением открыть трубопровод для подачи охлаждающей воды.
- 12. Отсоединить наполнительный трубопровод и всасывающий трубопровод для вакуума.
- 13. Испытание на герметичность (вентили (33, 34)).
- 14. Этим цикл R 22 готов к эксплуатации.

Если при поставке избыточное давление в цикле R 22 больше, чем O, I МПа (изб. давл.), то цикл R 22 можно считать герметичным (смотри тоже пункт 3.2.I.).

Немедленно можно заполнить заполняемое количество R 22, указанное в документации для общего изделия.

Поступать по выше упомянутым пунктам I, 2, 4, 5, IO до I4.

# 3.3.2. <u>Зарядка цикла R I3</u>

- Поступать подобно как при зарядке цикла R 22.

- R I3 является хладагентом высокого давления превышение заполняемого количества R I3, указанного в документации для общего изделия, может приводить к угрозам вследствие недопустимо высокого давления.
- Заполняемое количество R I3 взвешивать, а контролировать заполняемое количесть с помощью давления при наполнении с помощью таблицей давления при наполнении, поставляемой вместе с изделием.
- Перед зарядкой R I3 температуру в помещении через I2 часов поддерживать по вожможности постоянным. Допустимое отклонение от среднего значения: ± 2,5 К (Поддержать и во время процесса зарядки).

#### Ход зарядки

- І. Предохранители для компрессоров остаются удаленными.
- 2. Соответствующими переключением по обслуживающей части открыть магнитный вентиль (20).
- 3. Цики R I3 освободить от давления открыть вентиль (35).
- 4. На вентиле баллона с R I3 привинтить редукционный клапан настроенное давление редуцирования I,8 МПа (изб. давл.).
- 5. Баллон с R I3 поставить на весы (точность измерения  $\pm$  0,2 кг), а через наполнительный трубопровод соединить с вентилем (36). (Выпустить воздух из наполнительного трубопровода).
- 6. С вентилем (35) соединить вакуунасос с измерительным устройством для вакуума.
- 7. Цикл R I3 два раза вакуумировать до давления меньше, чем 40 гПа абсолютно (30 торр). После каждого вакуумирования с помощью R I3 разрушить вакуум, пока не достигнуто давление окружающей среды.
- 8. После разрушения вакуума ожидать 10 минут до нового вакуумирования.
- 9. Еще раз вакуумировать до остаточного давления мин. 40 гПа абсолютно (30 торр).
- 10. На вентиле (35) отсоединить всасывающий трубопровод для вакуума.
- II. С вентилем (35) соединить манометр.
- 12. Заполнить R 13 до частичного количества R 13, указанного в таблице давления при наполнении.
- 13. Определить среднюю температуру помещения в последних 12 часов.
- I4. После времени ожидания I5 минут контролировать давление.
- 15. Измеренное давление сравнить с давлением, указанным в таблице давления при наполнении для средней температуры помещения и для частичного количества.
- 16. Допустимое отклонение + 0.10 мПа.
- 17. Если измеренние давление превышает значение в таблице на более, чем О,І МПа, прекратить зарядку. Наверно заполнили слишком много R I3. Снова начинать процесс заполнения, начиная с пункта 9. (Очень тщательно взвешивать!)
- 18. Если контроль давления дает положительный результат, повысить наполняемое количество R 13 до значения, указанного в документации для общего изделия.
- 19. Контролировать давление аналогично к пунктам 15 до 17 для всего наполняемого количества.
- 20. Если допустимое отклонение давления не превышается, отсоединить манометр и наполнительный трубопровод.
- 21. Контролировать герметичность (вентили (35, 36)).
- 22. Этим цикл R I3 готов к эксплуатации.

Если холодильный узел при поставке неподвижно соединен с узлом с полезным объемом и если избыточное давление в цикле R I3 при поставке больше, чем 0, I МПа (изб. давл.), при зарядке хладагентом R I3 можно поступать следующим образом:

- Цикл R 13 можно считать герметичным. Ислытание на герметичность не нужно.
- Осуществить выше упомянутые работы, описанные в пунктах I, 2, II.
- Вентиль (36) открыть и давление в цикле R I3 регулировать на точно О.I МПа (изб.давл.).
- Теперь в цикле R I3 находятся 0,2 кг P I3.
- Соединить баллон с R I3, как описано в пунктах 4, 5,
- Учитывая находящееся в цикле количество R 13, наполняемое количество R 13 повысить до частичного количества R 13, указанного в таблице давления при наполнении.
- Дальше поступать по пунктам 13 до 22.

#### 3.4. Сдача в эксплуатацию

Образ действия при первой сдача в эксплуатацию:

- І. 6 часов до сдами в эксплуатацию включить малоподогреватели компрессоров.
- 2. С вентилем (33, 34, 35, 36) соединить манометры.
- 3. Контролировать функционирование маслоподогревателя (смотри пункт 3.5.3.3.)
- 4. Открыть трубопровод для подачи охлаждающей воды.
- 5. Холодильный узел пустить в ход. В частности давления на стороне нагнетания R 22 и R I3 постоянно наблюдать до контроля предохранительных реле давления.
- 6. Контролировать уровень масла (смотри раздел 3.5.3.2.).
- 7. Если имеются вентиляторы для охлаждения компрессоров, то они должны обдувать компрессоры. Направление вращения компрессоров любое.
- 8. Проверить предохранительные реле давления (смотри раздел 3.5.3.4.). До этого установка должна работать минимально 15 минут.
- 9. Проверить правильную работу установки на основе давлений, возникающего шума, температур трубопроводов, компрессоров (двигателей, кривошилных камер, головок цилиндров) и аппаратов и имеющегося охлаждающего действия.
- 10. Капиллярные трубки термостатических расширительных вентилей и реле температур не должно прикасаться других элементов конструкции и не вибрировать.
- II. После 3 часов рабочего времени без претензий сдачу в эксплуатацию можно считать оконченной.
- 12. Удалить манометры.
  Дальнейший контроль и техническое обслуживание холодильного узла осуществить по разделу 3.5. и 4.
- 13. Вышеупомянутый образ действия действует тоже для сдачи в эксплуатацию через более долгие перерывы в работе (много недель).

# 3.5. Контроль работы

#### 3.5.1. Общее

Холодильные узлы КВК 2 x 28-IV, КВК 2 x 28-IV/I и КВК 2 x 28-IV/2 пригодны для автоматической работы. Они могут работать без контроля на более долгое время. В соединении с соответствующими регулирующими и программными устройствами возможны автоматический режим регулирования и автоматические протекания и выключения.

Для того, чтобы предотвратить неисправности и узнать необходимость работ по техничес-кому обслуживанию рекомендуем осуществление контролев в соответствии с разделом 3.5.2.

Кроме этого при этом можно определить дефекты без того, чтобы получились серьезные последствия.

Сознательный эксплуатирующий свыше рекомендуемых контролев при контрольных обходах, переключениях на установке и в подобных случаях убедиться о правильном функционировании холодильной установки.

# 3.5.2. План проверок

|                           | Проверка                           | раз в неделю | каждый месяц | каждые полгода  |
|---------------------------|------------------------------------|--------------|--------------|-----------------|
| 3.5.3.I.                  | Герметичность                      |              |              | (I <sub>X</sub> |
| 3.5.3.2.                  | Уровень масла,<br>цвет масла       | х            |              |                 |
| 3.5.3.3.                  | Маслоподогреватели                 |              | x            | x               |
| 3.5.3.4.                  | Предохранительные реле<br>давления |              |              | x               |
| <b>3.</b> 5 <b>.3.</b> 5. | Заполняемое количество<br>R 13     |              |              | x               |

I) После первой сдачи в эксплуатацию контролировать два раза в неделю, потом два раза в интервале меснца, потом каждые полгода.

# 3.5.3. Описание отдельных проверок

# 3.5.3.1. Проверка герметичности

- Поверхность элементов, по которым течет хладагент, постоянно держать в чистоге. Следы масла указывают на неплотности.
- В указанные иентервалы времени (3.5.2.) контролировать установку галоидным течеискателем.
- Проверку осуществить во время перерыва в работе, когда все части установки приобрели температуру помещения и во всех частях цикла имеется то же самое давление.

#### 3.5.3.2. Проверка уровня и цвета масла

- Необходимый уровень масла при работе компрессоров (устойчивый режим): I/2 высоты масломерного стекла.
- В случае необходимости доллить масло в соответствии с разделом 4.1.3.1.
- Сильный черный оттенок может указать на повышенный износ компрессора. Заменить масло, при случае ремонтировать или заменить компрессор.

# 3.5.3.3. Проверка маслоподогревателей

- Каждый месяц: Если малоподогреватели работают более долгое время, температура кривошипных камер должна быть значительно выше, чем температура окружающей среды.
- Каждые полгода: Проверка электрического прохождения и контроль сопротивления изодяции с помощью индуктора с рукояткой 500 в. Требуемое значение сопротивления изоляции 2 мегом.
- Дефектные маслоподогреватели заменить в соответствии с разделом 4.1.3.3.

# 3.5.3.4. Проверка предохранительных реле давления

Реле давления для R 22 (23):

- Для измерении давления с вентилем (33) соединить манометр.
- Холодильный узел пустить в ход.
- через прибл. 15 мин. работы запирать подачу охлаждающей воды.
- Постоянно наблюдать повышение давления ма менометре.
- При I,6 ± 0,05 МПа (изб. давл.) компрессор для R 22 автоматически должен выключиться.
- Если выключение не производится, при I,7 МПа (изб. давл.) выключение осуществить вручную.

- Искать и устранить дефект повторить проверку (см. раздел 4.2.). Реле давления для R I3 (24):
- Для измерения давления с вентилем (36) соединить манометр.
- Нормальная работа холодильного узла в течение прибл. 30 минут.
- Холодильный узел выводить из действия.
- Вывинтить предохранители для компрессора для R 22 (3).
- Реле давления (25) для схемы разгрузки перемыкать в обслуживающей части.
- Холодильный узел пустить в ход. (Только компрессор для R 13 работает).
- <u>Постоянно</u> наблюдать повышение давления на нагнетательной стороне для R I3.
- При I,95 ± 0,05 МПа (изб. давл.) компрессор для R I3 должен выключиться.
- Если выключение не производится, при 2,00 МПа (изб. давл.) выключить вручную.
- Искать и устранить дефект повторить проверку (смотри раздел 4.2.).

Если доказано правильное функционирование предохранительных реле давления, выключить установку, удалить перемыкание реле давления (25), отсоединить манометр, ввинтить предохранители и открыть подачу охлаждающей воды.

# 3.5.3.5. Проверка наполняемого количества R 13

В связи с особенностями хладагента R 13 в цикле R 13 возможна проверка наполняемого количества с помощью разности потенциалов в простое:

- 24 часов холодильный узел оставить выключенным.
- Регистрировать температуру помещения во время последних I2 часов и образовать среднее значение.

Допустимые колебания = 2,5 К.

- С вентилем (35) соединить манометр измерить разность потенциалов.
- С помощью таблицы давления при наполнении, входящей в состав документации общей установки, определить наполняемое количество R I3, которое принадлежит к разности потенциалов и к средней температуре.
- Если это значение на более, чем IO % ниже указанного наполняемого количества R I3, долить R I3 (смотри раздел 4.I.4.I.2.).

# 3.6. Выключение - перерывы в работе

#### 3.6.1. Кратковременные прекращения работы (до несколька дней)

- Специальные манипуляции не нужны.
- Маслоподогреватели компрессоров оставить включенными.
- Не закрыть запорные вентили на компрессорах.
- При опасности замерзания смотри раздел 3.6.2.

# 3.6.2. Более долгие перерывы в работе

- На компрессоре для R 22 (3) можно закрыть всывающий и нагревательный запорные вентили. Отсасывание цикла R 22 закрытием вентиля (32) допускается.
- ЗАПОРНЫЕ ВЕНТИЛИ НА КОМПРЕССОРЕ ДЛЯ R 13 (2) НЕЛЬЗЯ ЗАКРЫТЬ.
- Выключить маслоподогреватель.
- При опасности замерзания основательно упразднить конструктивные детали, по которым течет вода.

Вывинтить пробки для упразднения и вентиляции на цикле воды и отсоединить подводы воды на холодильном узле.

# 4. Техническое обслуживание, неисправности, технический уход, ремонтные работы

# 4. І. Работы по техническому обслуживанию

#### 4.1.1. Общее

- Момент для проведения работ по технискому обслуживанию зависит от прдоджительности работы холодильного узла. Часть работ по техническому обслуживанию осуществляется только в случае необходимости в результате проведенных проверок (смотри раздел 4.1.2.).
- Непременно осуществить профилактичную замену рабочих вентилей, так как при поломке вентиля возможные следящие повреждения очень серьезные.
- Окраску обновить в случае необходимости
- Все работы по техническому обслуживанию могут осуществить соответствующие лица с специальными знаниями и знающие дело (смотри I.6.2.I.), только основную проверку приводного механизма и корпуса компрессора и при этом необходимую при случае замену дефектных деталей должна осуществить специальная мастерская.

# 4.1.2. План технического обслуживания

|          | работа по тахническому                               | продолжительность работы |          |          | в случае необходи- |
|----------|------------------------------------------------------|--------------------------|----------|----------|--------------------|
|          | обслуживанию                                         | 5000 ч.                  | I0000 प. | 25000 ч. | MOCTH MOCTH        |
| 4.I.3.I. | Доливка холодильного<br>масла                        |                          |          |          | X                  |
| 4.1.3.2. | Очистка конденсатора<br>и охладителя сжатого<br>газа | x                        |          | -        |                    |
| 4.1.3.3. | Замена маслоподогре-<br>ватемя                       |                          |          |          | х                  |
| 4.I.4.I. | Доливка хладагента                                   |                          | -        |          | X                  |
| 4.I.4.2. | Замена рабочих венти-<br>ией компрессоров            | x                        | -        |          |                    |
| 4.I.4.2. | Замена масла                                         |                          | x        |          |                    |
|          | Основная проверка при-                               |                          |          | х        |                    |

# 4.1.3. Работа по техническому обслуживанию без вмещательства в цики хладагента

#### 4.1.3.1. Доливка колодильного масла

- Долить только такое масло, которое при поставке находится в компрессоре (смотри фирменную табличку).
- Образ действия тот же самый для обоих компрессоров.
- Выключить установку.
- С вентилем (34 или 35) соединить наполнительный трубопровод для масла.
- Заполняемое масло подать в чистый мерный бак.
- Наполнительный трубопровод для масла держать под уровнем масла в мерном баке и осторожным открытием вентиля (34 или 35) воздуха выпустить из трубопровода.
- Компрессор (2 или 3) пустить в ход и закрыть всасывающий запорный вентиль (29 или 31).
- Приблизительно через минуту работы осторожно открывать вентиль (34 или 35) и всаенвать масло в компрессор.

- После того как заполнили 500 см<sup>8</sup> масла, закрыть вентиль (34 или 35).
- Открыть всасывающий запорный вентиль, а при нормальной работе компрессора контролировать уровень масла.
- При случае продолжить наполнение масла равным образом до уровня масла I/2 высоты масломерного стекла, однако долить минимально I500 см<sup>3</sup> масла. Если и тогда не имеется уровень масла "I/2 высоты масломерного стекла", то имеется ненормальное перемещение масла.

Обозначение масла "КМН" на фабричной табличке компрессора значит:

Холодильное масло Ренизо КМН

Изготовитель: Рудольф Фукс, Минеральёльверк КГ, 6800 Мангейм, почт.ящик 740

# 4.1.3.2. Очистка водных путей конденсатора и охладителя сжатого газа

- Удалить водообводные крышки и резиновые плиты на торцевых сторонах.
- Механическая очистка с помощью пластмассовых щеток.
- Очистка острыми и твердыми предметами и применение химических средств для очистки воспрещается!
- При монтаже обратить внимание на то, чтобы насечка в резиновой плите показала вверх.
- Первую очистку осуществить через 5000 часов. Потом в соответствии с определенным загразнением определить период до следующей очистки.

# 4.1.3.3. Замена маслоподогревателя

- Выключить главный выключатель отсоединить установку от электрической сети.
- Вывинтить предохранители для маслоподогревателя.
- Отсоединить подводящий кабель для маслоподогревателя.
- Вывинтить нажимный винт, а нагревательный стержень осторожно вытащить из втулки на кривошипной камере компрессора.
- Монтаж нового нагревательного стержня осуществить в обратной последовательности.

# 4.І.4. Работы по техническому обслуживанию с вмещательством в цики хладагента

# 4.І.4.І. Доливка хладагента

- Если потеря хладатента не получилось вследствие работ по техническому обслуживанию и ремонтных работ, то сперва определить и устранить неплотности, которые привели к потере хладатента.
- Если все неплотности находятся на нагнетательной стороне соответствующего цикла и наверняка воздух не попал в цикл хладагента, можно долить хладагент без предварительного вакуумирования.

#### 4.І.4.І.І. Доливка хладагента R 22

- I. Неплотности, которые привели к потере хладагента R 22, находились на стороне нагнетания цикла R 22. Нет воздуха в цикле R 22:
- Поступать по разделу 3.3.1., пунктам I, 2, 4, 5, IO, II, I2, однако, постепенно долить 0,5 кг R 22, пока цики R 22 не работает правильно.
- 2. Через неплотные места, которые привели и потере хладагента R 22, воздух попал в циил R 22:
- Цикл R 22 снова заполнить по разделу 3.3.1.

# 4.I.4.I.2. Доливка хладагента R I3

- С вентилем (35) соединить манометр.
- I. Неплотности, которые привели к потере хладагента, находились на нагнетательной стороне. Воздух не попад в цикл В I3:

- Имершаеся заполняемое количества R 13 определить по разделу 3.5.3.5.
- Если имеющееся заполняемое количество R I3 меньше, чем частичное количество, указанное в таблице давления при наполнении, сперва заполнить до этого частичного количества. Если оно больше, немедленно заполнить указанное количество.
- Ход заполнения по разделу 3.3.2., пунктам I, 2, 4, 5, I2 до 20. Если остаточное количество больше, чем частичное количество, то пункты I4 до I7 не нужны.
- 2. Через неплотные места, которые привели к потере хладагента R I3, воздух попал в установку:
  Цикл R I3 снова заполнить, как описано в разделе 3.3.2.

# 4.1.4.2. Замена рабочих вентилей и холодильного масла

# 4.I.4.2.I. Компрессор в цикле R I3

- I. Компрессор (2) прогревать (температура масла мин. +  $40^{\circ}$ C).
- 2. Установку разъединить от сети, вывинтить предохранители для компрессора.
- 5. Упразднить цики для R I3.
- 4. Закрыть запорные вентили (30, 31).
- 5. Открыть вентиль (35).
- 6. Вывинтить винт для спуска масла (находится под масломерным стеклом) и спустить масло.
- 7. Контролировать спущенное масло. При сильном загрязнении осуществить ход с промывной с заменой масла после этого.
- 8. Ввинтить винт для спуска масла.
- 9. На компрессоре отсоединить трубопровод для реле давления (24, 25).
- 10. Демонтировать головку цилиндра и клапанную доску.
- II. Удалить старые прокладки, чистить уплотняющие поврежности.
- 12. Надеть новую клапанную доску и головку цилиндра, использовать прокладки, пропитанные предварительно холодильным маслом, которое тоже находится в компрессоре.
- 13. Болты в головке цилиндра затянуть равномерно по-перекрестно (момент затяжки 45 Нм).
- 14. Опять осединить трубопровод для реле давления (24, 25) с компрессором.
- 15. Компрессор проверить на герметичность. По вентилю (35) заполнить жладагенты (R 12, R 22)до 0,2 МПа (изб. давл.). Потом с помощью сухого азота (точка росы 35°С или ниже) повысить давление до 0,4 МПа (изб. давл.) (предварительное испытание), а после этого до 2,0 МПа изб. давл.) Герметичность проверить с помощью галоидного течеискателя. Обратить внимание на указания в разделе 3.2.3.
- 16. Компрессор освободить от давления, открывая вентиль (35).
- 17. Открыть запорные вентили (30, 31).
- 18. Ваполнить R 13 по разделу 3.3.2.
- 19. При зарядке после первого вакуумирования с помощью вакуума всасывать холодильное масло по вентилю (35, пока не достигнута I/2 высоты масломерного стекла. Обратить внимание на указания в разделе 4.1.3.1.!
- 20. Защитные крышки навинтить на полностью открытые вентили (30, 31) и обновить марки-ровку краской.
- Если осуществляют замену вентилей, выполнить операции 2, 3, 4, 5 до 16, 18, 19, 20.

## 4.I.4.2.2. Компрессор в цинле R 22

Цикл R 22 не надо управднить.

- I. С вентилем (34) соединить манометр.
- 2. Компрессор прогревать (температура масла мин. +  $40^{\circ}$ C).
- 3. Запорный вентиль (29) медленно закрывать.
- 4. Если манометр показывает 0,05 МПа разрежения, выключить компрессор и немедленно закрыть вентиль (28).
- 5. Установку разъединить от сети, вывинтить предохранители для компрессора (3).
- 6. Запорный вентиль (29) осторожно открыть. Давление в компрессоре повысить до 0,02 МПа (изб. давл.).
- 7. Отсоединить манометр на вентиле (34), открыть вентиль (34).
- 8. По принципу продолжить в соответствии с разделом 4.1.4.2.1., пунктам 6 до 15, одна-ко, испытание на герметичность проводить с I,6 МПа (изб. давл.).
- 9. Компрессор освободить от давления: открытть вентиль (34), а трубопровод для реле давления (23) отсоединить на короткое время и снова соединить его.
- 10. Вакуумировать компрессор через вентиль (34).
- II. После этого с помощью имеющегося вакуума через вентиль (34) зарядить маслом до I/2 высоты масломерного стекла (смотри раздел 4.I.3.I.).
- 12. Вакуумнасос соединить с вентилем (34) и с высверленным отверстием для винта для выпуска воздуха на вентиле (28) (тройник, запорный вентиль и манометр во всасывающей линии для вакуума).
- 13. Компрессор два раза вакуумировать до мин. 40 гЛа абсолютно (30 торр).
  После каждого вакуумирования закрыть запорный вентиль во всасывающей линии для вакуума, а вентиль (29) осторожно открывать, пока не достигнуто давление окружающей среды в компрессоре.
- 14. Еще раз вакуумировать до мин. 40 гПа.
- 15. Закрыть вентиль (34), вентили (28, 29) открыть до упора.
- 16. Вакуумные линии отсоединить на компрессоре.
- 17. Винт для выпуска воздуха ввинтить на вентиле (28).
- 18. Защитные крышки навинтить на полностью открытые вентили (28, 29) и обновить маркировку краской.

Этим чики для R 22 снова готов к эксплуатации. Если осуществляют только замену вентилей, при пункте 8 проводить только операции 9 до 15 по разделу 4.1.4.2.1., а выше упомянутые пункты IO, II не нужны.

# 4.2. Неисправности - принципы и устранение

При всех неисправностях сперва проверить, имеются ли ошибки в обслуживании или дефент в электропитании, в электрической схеме или в регулировании. Эти неисправности здесь не рассматриваются.

Ниже следующая таблица дает обзор неисправностей, которые могут получаться на холодильном узле.

Уназание: При выключении компрессора для R 22 электрическая схема выключает тоже компрессор для R I3. Если компрессор для R I3 остановился, поэтому сперва проверить, выключен ли компрессор для R 22. Определить причину для выключения компрессора для R 22.

|                                                 |                                                                                                                        | 18                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I установление                                  | 2 установление                                                                                                         | Возможная причина                                                                                               | устранение                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ненормальная<br>остановка одно-<br>го или обоих | Сработало реле<br>давления соот-<br>ветствующего                                                                       | Отказ работы снабже-<br>ния охлаждающей во-<br>дой.                                                             | Проверить снабжение охлаждаю-<br>щей водой.                                                                                                                                                                                                                                                                                                                                                                                          |
| компрессоров                                    | компрессора.                                                                                                           | Слишком высокая тем-<br>пература поступающей<br>охлаждающей воды.                                               | Обеспечить более холодную охлаждающую воду — не подрегулировать водорегулятор (17).                                                                                                                                                                                                                                                                                                                                                  |
|                                                 |                                                                                                                        | Загрязнение на сторо-<br>не воды конденсатора<br>(4) и/или охладителн<br>сжатого газа (6).                      | Чистить конструтивную деталь в соответствии с разделом 4.1.3.2.                                                                                                                                                                                                                                                                                                                                                                      |
| )                                               |                                                                                                                        | По ошибке закрыли<br>нагнетательный за-<br>порный вентиль (28<br>или 30).                                       | Проверить положение нагнета-<br>тельных запорных вентилей.<br>Открыть их до упора.                                                                                                                                                                                                                                                                                                                                                   |
|                                                 |                                                                                                                        | Реле давления не ра-<br>ботает безупречно.                                                                      | Проверить предохранительное реле давления в соответствии с разделом 3.5.3.4. При случае подрегулировать или заменить реле давления (снова пломбировать реле давления!!)                                                                                                                                                                                                                                                              |
|                                                 |                                                                                                                        | При простое компрес-<br>сора для R I3 цикл<br>R 22 с уменьшенной<br>холодопроизводитель—<br>ностью или без нее. | Устранение этой причины неис-<br>правности рассматривается<br>позже.                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 |                                                                                                                        | В соответствующем цикле находится воздух.                                                                       | Специалист должен определить, находится ли в самом деле воз дух в холодильном цикле. Если да, искать место утечки, чере которое воздух мог попать в цикл (3.2). После этого снова зарядить цикл хладагентом (раздел 3.3.1. или 3.3.2.)                                                                                                                                                                                               |
|                                                 | Термическая за-<br>щита обмоток<br>соответвующего<br>компрессора сра-<br>ботала и/или<br>предохранители<br>перегорели. | Перегрузка компрес-<br>сора вследствие<br>слишком высокого<br>давления конденса-<br>ции.                        | При перегрузке компрессора дл R 22: Обеспечить более холодную охлаждающую воду. Повысит давление охлаждающей воды. При перегрузке компрессора дл R 13: Проверить разгрузку при пуске. Цикл R 22 проверить на холодо производительность.                                                                                                                                                                                              |
|                                                 |                                                                                                                        | Электрический де-<br>фект двигателя<br>компрессора.                                                             | Подготовленный электрик долже замерить двигатель компрессор Дефектный компрессор заменить Двигатель перегорей, а при этом образовались продукты разложения (изменение цвета масла, едкий запах при открытии цикла хладагента): Выпустить хладагент, заменить фильтр-осушитель, промыть цикл сухим азотом (точка росы — 35°С) или хладагентом. Вмонтировать новый компрессор Цикл снова зарядить хладагентом (раздел 3.3.1., 3.3.2.). |
|                                                 |                                                                                                                        | Перегрузка приводно-<br>го двигателя вслед-<br>ствие механического<br>дефекта компрессора.                      | Измерить токо потребление (дав ление всасывания при этом мен ше, чем 0,25 МПа абсолютно. При токо потреблении больше, чем 10 А и/или сильно колебаю щем токо потреблении и/или ненормальном шуме и/или необыкновенном нагреве на компрессор наверно компрессор дефектный. Заменить вентиль раздел 4.1.4.2.) или компрессор (4.3.                                                                                                     |

19 I установление 2 установление возможная причина Устранение Холодопроизво-Высокое давление Слишком теплая охлаж-Обеспечить более холодную конденсации в дающая вода и/или дительность охлаждающую воду. Повысить давление охлаждающей уменьшилась. цинле R 22 (изслишком низкое давмерено на вентиле (33). воды. ление охлаждающей воды. Не подрегупировать водорегу-лягор (17). Давление всасы-Термостатический Заменить термостатический вания в цикле R 22 или R I3 расширительный вен-тиль (II/I2) не от-крывается. Система расширительный вентиль. При случае демонтировать вентиль и устранить дефект. очень нивкое (измерено на датчиков не гермевентиле (34 или тична. Вентиль засорился. Магнитный вентиль (19/20) не откры-Проверить подвод тока к магнитному вентилю. вается. Проверить катушку, устранить дафект. Фильтр-осушитель (15/16) засорился. В этом случае показы-Заменить фильтр-осущитель. вается различие температуры между входом и выходом фильтра-OCYMNIENE. В цикле имеется другое место дроссели-Определить и устранить место дросселирования. рования. Контролировать наполняемое количество R I3 (3.5.3.5.), долить хладагент (разделы +.I.4.I., 4.I.4.I.1., 4.I.4.I.2.) Наполнение хладагентом в цикле R 22 и R I3 слишком низкое - неплотности. Контроль рабочих вентилей (4.1.4.2.). Если вентили пов-Ненормальный шум Повреждение рабочих на компрессоре (2 или 3) и/или сильное нагревавентилей компрессора реждены, заменить клапанную доску. При полученных следствиях (повреждение поршня, рабочей поверхности цилиндра, (2 или 3).ние головок цилиндров и/или быстрое уравнове-шивание давления приводного механизма). Заменить компрессор. от стороны нагнетания к стороне всасывания компрессора в простое. Магнитный вентиль (22) на закрывается безупречно вследствие загрязнений, Демонтировать магнитный вен-При нормальном режиме охлажде-ния на магнитном вентиле (22) и на дросселе (42) тиль, устранить дефект. повреждений седла постоянно слышен вентиля и т.п. шипящий шум, нес-мотря на то, что на катушке не приложено напряжение. Нет холодопроизводи тельности в цикле Схема разгрузки действует очень Смотри выше. часто, очень долго или посто-R 22. С помощью манометра измерить давление на вентиле (36). При I,5 МПа (изб. давл.) магнитный вентиль должен открываться, а при I,2 МПа (изб.давл.) Неправильная работа .OHHP реле давления (25).

Воздух в цикле R I3. Смотри выше.

- закрываться.

При случае подрегулировать реле давления (25).

| Т установление                                                                  | 2 установление | Возможная причина                                                                                   | Устранение                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Romnpeccop no-<br>kpur uheem, kpu-<br>Bomunhan kamepa<br>crahoburch de-<br>noh. |                | Регулирование пере-<br>грева термостати-<br>ческого расшири-<br>тельного вентиля<br>слишком низкое. | Увеличить перегрев. Покрытие инемм не должно рас- пространиться на корпус ком- прессора, но обхватывать весь всасывающий запорный вентиль (29, 31).                                                                |
|                                                                                 |                | Постороннее тело защемилось в седле термостатического расширительного вентиля.                      | Демонтировать вентиль, контро-<br>лировать седло вентиля, уда-<br>лить постороннее тело.                                                                                                                           |
|                                                                                 |                | Механизм вентиля<br>защемился.                                                                      | Демонтировать вентиль, устра-<br>нить причину защемления, при<br>случае заменить вентиль.                                                                                                                          |
|                                                                                 |                | Прикрепление датчика термостатического расширительного вентиля ослабился.                           | Проверить прикрепление датчика, датчик крепко установить на всасывающем трубопроводе, контакт с всасывающим трубопроводом по всей длине датчика, нет коррозии на месте соприкосновения.                            |
|                                                                                 |                | Только для компрес-<br>сора R 13<br>Повторный впрыск<br>хладагента не рабо-<br>тает безупречно.     | Проверить работу реле темпера-<br>туры (26): При температурах<br>при наполнении ниже ОС он<br>должен закрыть магнитьный<br>вентиль (22), а при температу-<br>рах свыше + 10°С — открыть<br>магнитный вентиль (22). |

### 4.3. Замена компрессоров

- I. Установку разъединить от электрической сети, выключить главный выключатель, удалить предохранители в подводке тока к общей установке.
- 2. Отсоединить подводящий кабель для маслоподогревателя.
- 3. Упразднить соответствующий холодильный цикл.
- 4. Линию управления реле давления (23 или 24, 25) и соединительную часть с вентилем (34 или 35) отсоединить на компрессоре.
- 5. Закрыть нагнетательный и всасывающий запорные вентили на компрессоре.
- 6. Отсоединить резьбовые соединения труб на нагнетательном и всасывающем запорных вентилях.
- 7. Шланги для подачи и возврата охлаждающей воды отсоединить на компрессоре.
- 8. Отсоединить резиновые рессоры на траверсе компрессора и на балке каркаса.
- 9. Удалить резиновые рассоры, а компрессор вытащить вперед, пока не доступна коробка для электрического присоединения.

  Под траверсы положить прокладки, чтобы не повредить окраску.
- 10. Токоподводящий кабель к компрессору и провод для термической защиты обмоток отсоединить в коробке для электрического присоединения.
- II. Полностью вытащить компрессор.
- 12. Вмонтировать компрессор в обратной последовательности.
- Демонтированный компрессор правильно закрыть. Использовать детали запасного компрессора.
- 14. Осуществить испытание на герметичность (3.2.) и заполнить хладагент (3.3.).

Изменения в ходе технического усовершенствования оставляем за собой.

Перечень приложений к Технической документации холодильного узла  $KBK 2 \times 28-IV$ ,  $KBK 2 \times 28-IV/2$ 

422.29/00-0000:00 Anl

Приложение I: Холодильный узел - наскалный КВК 2 x 28-IV 422.29/00-0000:00 TD I

Приложение 2: Схема трубопроводов КВК 2 x 28-IV 422.29/00-0000:00 Rp (3)

Приложение 3: Перечень запасных частей КВК 2 x 28/IV 422.29/00-0000:00 StE(4) л. I и 2

Приложение 4: Техническая документация для бессальниковых холодильный компрессоров типового ряда 35-2 и 50-2



VEB Maschinenfabrik Nema DDR - 9804 Netzschkau

Telefon: 49 20 Reichenbach Telex: 07-8423/07-8424

Ein Betrieb des VEB Kombinat Luft- und Kältetechnik

Exporteur:



Deutsche Demokratische Republik

Ko 272/85 V 7 1 1341 N 3